
REPORT DOCUMENTATION PAGE Form Approved

OBM No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response. Including the tune for reviewing instructions, searching existing date sources,gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf thisi collection of jnrarmatnn,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 222024502. and to the Office of Management and Budget Paperwork Reduction Project (0704-016W. Washington. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE
November,

REPORT TYPE AND DATES COVERED
memorandum

4. TITLE AND SUBTITLE
Parallel Simulation of Subsonic Fluid Dynamics on a Cluster of
Workstations

6. AUTHOR(S)

Panayotis A. Skordos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/MONITORING AGENCY NAME(S) AI*ADDREsl'(ek) | \\j-

Office of Naval Research 1|ffi^ r; ^Ig, Ci E* (
Information Systems |IL „m.o,Qi 19951
Arlington, Virginia 22217 l^^P^{J3^

5. FUNDING NUMBERS

N00014-92-J-4097
9001651-MIP

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1485

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED

WATEMEOT A

Mpppyrwi few pe&Mm wimcttm

,12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An effective approach of simulating fluid dynamics on a cluster of non-dedicated workstations is
presented. The approach uses local interaction algorithms, small communication capacity, and
automatic migration of parallel processes from busy hosts to free hosts. The approach is
well-suited for simulating subsonic flow problems which involve both hydrodynamics and acoustic
waves; for example, the flow of air inside wind musical instruments. Typical simulations achieve
80% parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed
measurements of the parallel efficiency of 2D and 3D simulations are presented, and a theoretical
model of efficiency is developed which fits closely the measurements. Two numerical methods of
fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.

14. SUBJECT TERMS
AI, MIT, Artificial Intelligence, Distributed Computing,
Workstation Cluster, Network, Fluid Dynamics,
Musical Instruments

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED
N5N754Ö-Ö1-2S0-!>SÜÜ

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES
17

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED
Standard Form 298 (Hev. 2-89)
Prescribed by ANSI Std 239-18
298-102

!}?'■

;.!.Di

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo Xo. 1485 November, 1994

Parallel simulation of subsonic fluid dynamics
on a cluster of workstations

Panayotis A. Skordos
pasoai.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

An effective approach of simulating fluid dynamics on a cluster of non-dedicated workstations is presented.

The approach uses local interaction algorithms, small communication capacity, and automatic migration

of parallel processes from busy hosts to free hosts. The approach is well-suited for simulating subsonic

flow problems which involve both hydrodynamics and acoustic waves; for example, the flow of air inside

wind musical instruments. Typical simulations achieve 80% parallel efficiency (speedup/processors) using

20 HP-Apollo workstations. Detailed measurements of the parallel efficiency of 2D and 3D simulations are

presented, and a theoretical model of efficiency is developed which fits closely the measurements. Two nu-

merical methods of fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.

Copyright © Massachusetts Institute of Technology, 1994

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology.

Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of

the Department of Defense under Office of Naval Research contract N00014-92-J-4097 and by the National Science Foundation

under grant number 9001651-MIP.

19950628 001

Figure 1: Simulation of a flue pipe using 20 workstations

in a (5 x 4) decomposition.

1 Introduction

An effective approach of simulating fluid dynamics on a

cluster of non-dedicated workstations is presented. Con-

currency is achieved by decomposing the simulated area

into rectangular subregions, and by assigning the sub-

regions to parallel subprocesses. The use of local in-

teraction methods, namely explicit numerical methods,

leads to small communication requirements. The paral-

lel subprocesses automatically migrate from busy hosts

to free hosts in order to exploit the unused cycles of

non-dedicated workstations, and to avoid disturbing the

regular users of the workstations. The system is straight-

forwardly implemented on top of UNIX and TCP/IP

communication routines.

Typical simulations achieve 80% parallel efficiency

(speedup/processors) using 20 HP-Apollo workstations

in a cluster where there are 25 non-dedicated worksta-

tions total. Detailed measurements of efficiency in sim-

ulating two and three-dimensional flows are presented,

and a theoretical model of efficiency is developed which

fits closely the measurements. Two numerical methods

of fluid dynamics are tested: finite differences and the

lattice Boltzmann method. Further, it is shown that

the shared-bus Ethernet network is adequate for two-

dimensional simulations of fluid dynamics, but limited

for three-dimensional ones. It is expected that new tech-

nologies in the near future such as Ethernet switches.

FDDI and ATM networks will make practical three-

dimensional simulations of fluid dynamics on a cluster

of workstations.

The present approach is well-suited for simulating sub-

sonic flow problems which involve both hydrodynamics

and acoustic waves; for example, the flow of air inside

wind musical instruments. This is because such prob-

lems favor the use of explicit numerical methods versus

implicit ones, as explained below and in section 6. The

use of explicit methods is desirable for parallel comput-

ing on a cluster of workstations because explicit methods

have small communication requirements. Thus, there is

a good match between the nature of the problem, the

use of explicit methods, and the parallel system.

The choice between explicit and implicit numerical

methods is a recurring theme in scientific computing.

Explicit methods are local, ideally scalable, and require

small integration time steps in order to remain numer-

ically stable. By contrast, implicit methods are chal-

lenging to parallelize, have large communication require-

ments, but they can use much larger integration time

steps than explicit methods. Because of these differ-

ences between explicit and implicit methods, the deci-

sion which method to use depends on the available com-

puter system, and on the requirements of the problem on

the integration time step. For instance, the simulation

of subsonic flow requires small integration time steps in

order to follow the fast-moving acoustic waves. Thus,

subsonic flow is a good problem for explicit methods.

1.1 Comparison with other work

The suitability of local interaction algorithms for parallel

computing on a cluster of workstations has been demon-

strated in previous works, such as [1], [2], and elsewhere.

Cap&Strumpen [1] present the PARFORM system and

simulate the unsteady heat equation using explicit fi-

nite differences. Chase&et al. [2] present the AMBER

parallel system, and solve Laplace's equation using Suc-

cessive Over-Relaxation. The present work emphasizes

and clarifies further the importance of local interaction

methods for parallel systems with small communication

capacity. Furthermore, a real problem of science and

engineering is solved using the present approach. The

problem is the simulation of subsonic flow with acoustic

waves inside wind musical instruments.

In the fluid dynamics community, very little atten-

tion has been given to simulations of subsonic flow with

acoustic waves. The reason is that such simulations
are very compute-intensive, and can be performed only

when parallel systems such as the one described here
are available. Further, the fluid dynamics community

has generally shunned the use of explicit methods until

recently because explicit methods require small integra-

tion time steps to remain numerically stable. With the

increasing availability of parallel systems, explicit meth-

ods are slowly attracting more attention. The present

work clearly reveals the power of explicit methods in one

particular example, and should motivate further work in

this direction.

Regarding the experimental measurements of parallel

efficiency which are presented in section 7, they are more

detailed than in any other reference known to the author,

especially for the case of a shared-bus Ethernet network.

The model of parallel efficiency which is discussed in

section 8 is based on ideas which have been discussed

previously, for example in Fox et al. [3] and elsewhere.

Here, the model is derived in a clear and direct way,

and moreover the predictions of the model are compared

against experimental measurements of parallel efficiency.

Regarding the problem of using non-dedicated work-

stations, the present approach solves the problem by

employing automatic process migration from busy hosts

to free hosts. An alternative approach that has been

used elsewhere is the dynamic allocation of processor

workload. In the present context, dynamic allocation

means to enlarge and to shrink the subregions which

are assigned to each workstation depending on the CPU

load of the workstation (Cap&Strumpen [1]). Although

this approach is important in various applications (Blu-

mofe&Park [4]), it seems unnecessary for simulating fluid

flow problems with static geometry. For such problems,

it may be simpler and more effective to use fixed size sub-

regions per processor, and to use automatic migration of

processes from busy hosts to free hosts. The latter ap-

proach has worked very well in the parallel simulations

presented here.

Regarding the design of parallel simulation systems,

the present work aims for simplicity. In particular,

the special constraints of local interaction problems and

static decomposition have guided the design of the par-

allel system. The automatic migration of processes has

been implemented in a straightforward manner because

the system is very simple. The availability of a homoge-

neous cluster of workstations, and a common file system

have also simplified the implementation, which is based

on UNIX and TCP/IP communication routines. The ap-

proach presented here works well for spatially-organized

computations which employ a static decomposition and

local interaction algorithms.

The approach presented here does not deal with is-

sues such as high-level distributed programming, paral-

lel languages, inhomogeneous clusters, and distributed

computing of general problems. Efforts along these di-

rections are the PVM system (Sunderam [5]), the Linda

system (Carriero [6]), the packages of (Kohn&Baden [7])

and (Chesshire&Naik [8]) that facilitate a parallel de-

composition, the Orca language for distributed comput-

ing (Bal&et al. [9]), etc.

1.2 Outline

Section 2 presents some examples of parallel simulations

which demonstrate the power of the present approach,

and also help to motivate the subsequent sections. Sec-

tion 3 reviews parallel computing and local interaction

problems in general. Sections 4 and 5 describe the im-

plementation of the parallel simulation system, including

the automatic migration of processes from busy hosts to

free hosts. Section 6 explains the parallelization of nu-

merical methods for fluid dynamics. Finally, sections 7

and 8 present experimental measurements of the perfor-

mance of the parallel system, and develop a theoretical

model of parallel efficiency for local interaction problems

which fits well the measured efficiency. Most ideas are

discussed as generally as possible within the context of

local interaction problems, and the specifics of fluid dy-

namics are limited to section 2 and section 6.

2 Examples of flow simulations

The parallel system has been successfully applied to sim-

ulate the flow of air inside flue pipes of wind musical in-

struments such as the organ, the recorder, and the flute.

This is a phenomenon that involves the interaction be-

tween hydrodynamic flow and acoustic waves: When a

jet of air impinges a sharp obstacle in the vicinity of a

resonant cavity, the jet begins to oscillate strongly, and

it produces audible musical tones. The jet oscillations

are reenforced by a nonlinear feedback from the acoustic

waves to the jet. Similar phenomena occur in human

whistling and in voicing of fricative consonants (Sha-

dle [10]). Although sound-producing jets have been stud-

ied for more than a hundred years, they remain the sub-

ject of active research (Verge94 [11, 12], Hirschberg [13])

because they are very complex.

Using our distributed system we can simulate jets (Jog^

of air inside flue pipes using uniform orthogonal grids ;y^fj»

n
a

J>v.

■"- ~-%AJS»

■x-m:
.'".-1

Figure 2: Simulation of a flue pipe using 15 workstations

in a (6 x 4) decomposition with 9 subregions inactive.

as large as 1200 x 1200 in two dimensions (1.5 million

nodes). We typically employ smaller grids, however,

such as 800 x 500 (0.38 million nodes) in order to re-

duce the computing time. For example, if we divide a

800 x 500 grid into twenty subregions and assign each

subregion to a different HP9000/700 workstation, we can
compute 70,000 integration steps in 12 hours of run time.

This produces about 12 milliseconds of simulated time,

which is long enough to observe the initial response of a

flue pipe with a jet of air that oscillates at 1000 cycles

per second.

Figure 1 shows a snapshot of a 800 x 500 simulation

of a flue pipe by plotting equi-vorticity contours (the

curl of fluid velocity). The decomposition of the two-

dimensional space (5x4) = 20 is shown as dashed lines

superimposed on top of the physical region. The gray

areas are walls, and the dark-gray areas are walls that

enclose the simulated region and demarcate the inlet and

the outlet. The jet of air enters from an opening on the

left wall, impinges the sharp edge in front of it, and it

eventually exits from the simulation through the opening

on the right part of the picture. The resonant pipe is

located at the bottom part of the picture.

Figure 2 shows a snapshot of another simulation that

uses a slightly different geometry than figure 1. In par-

ticular, figure 2 includes a long channel through which

the jet of air must pass before impinging the sharp edge.

Also, the outlet of the simulation is located at the top of

the picture as opposed to the right. This is convenient

because the air tends to move upwards after impinging

the sharp edge. Overall, figure 2 is a more realistic model

of flue pipes than figure 1.

From a computational point of view the geometry of

figure 2 is interesting because there are subregions that

are entirely gray, i.e. they are entirely solid walls. Con-

sequently, we do not need to assign these subregions to

any workstation. Thus, although the decomposition is

(6 x 4) = 24 , we only employ 15 workstations for this

problem. In terms of the number of grid nodes, the full

rectangular grid is 1107 x 700 or 0.7 million nodes, but

we only simulate 15/24 of the total nodes or 0.48 million

nodes. This example shows that an appropriate decom-

position of the problem can reduce the computational

effort in some cases, as well as provide opportunities for

parallelism. More sophisticated decompositions can be

even more economical than ours; however, we prefer to

use uniform decompositions and identical-shaped sub-

regions in our current implementation for the sake of

simplicity.

We have performed all of the above simulations us-

ing the lattice Boltzmann numerical method. We will

describe further this method and other issues of fluid

dynamics in section 6. Next, we review the basics of

local interaction problems, and we describe the imple-
mentation of our distributed system. These issues are

important for understanding in detail how our system

works and why it works well.

3 Local interaction computations

We define a local interaction computation as a set of

"parallel nodes" that can be positioned in space so that

the nodes interact only with neighboring nodes. For ex-

ample, figure 3 shows a two-dimensional space of parallel

nodes connected with solid lines which represent the lo-

cal interactions. In this example, the interactions extend

to a distance of one neighbor, and have the shape of a

star stencil, but other patterns of local interactions are

also possible. Figure 4 shows two typical interactions

which extend to a distance of one neighbor, a star sten-

cil and a full stencil.

The parallel nodes of a local interaction problem are

the finest grain of parallelism that is available in the

problem; namely, they are the finest decomposition of

the problem into units that can evolve in parallel af-

ter communication of information with their neighbors.

In practice, the parallel nodes are usually grouped into

subregions of nodes, as shown in figure 3 by the dashed
lines. Each subregion is assigned to a different proces-

Figure 3: A problem of local interactions in two dimen-

sions, and its decomposition (2x2) into four subregions.

sor, and the problem is solved in parallel by executing

the following sequence of steps repeatedly.

• Calculate the new state of the interior of the sub-

region using the previous history of the interior as

well as the current boundary information from the

neighboring subregions.

• Communicate boundary information with the

neighboring subregions in order to prepare for the

next local calculation.

The boundary which is communicated between neigh-

boring subregions is the outer surface of the subregions.

Section 4.2 describes a good way of organizing this com-

munication.

Local interaction problems are ideal for parallel com-

puting because the communication is local, and also be-

cause the amount of communication relative to computa-

tion can be controlled by varying the decomposition. In

particular, when each subregion is as small as one node

(one processor per node), there is maximum parallelism,

and a lot of communication relative to the computation

of each processor. As the size of each subregion increases

(which is called "coarse-graining"), both the parallelism

and the the amount of communication relative to com-

putation decrease. This is because only the surface of

a subregion communicates with other subregions. Even-

tually, when one subregion includes all the nodes in the

problem, there is no parallelism and no need for commu-

Figure 4: A star stencil and a full stencil represent two

typical nearest neighbor local interactions.

nication anymore. Somewhere between these extremes,

we often find a good match between the size of the subre-

gion (the "parallel grain size") and the communication

capabilities of the computing system. This is the rea-

son why local interaction problems are very flexible and

highly desirable for parallel computing.

4 The distributed system

The design of our system follows the basic ideas of local

interaction parallel computing that we discussed above.

In this section, we describe an implementation which is

based on UNIX and TCP/IP communication routines.

Our implementation also exploits the common file sys-

tem of the workstations.

4.1 The main modules

For the sake of programming modularity, we organize

our system into the following four modules:

• The initialization program produces the initial state

of the problem to be solved as if there was only one

workstation.

• The decomposition program decomposes the initial

state into subregions, generates local states for each

subregion, and saves them in separate files, called

"dump files". These files contain all the information

that is needed by a workstation to participate in a

distributed computation.

• The job-submit program finds free workstations in

the cluster, and begins a parallel subprocess on each

workstation. It provides each process with a dump

file that specifies one subregion of the problem. The

processes execute the same program on different

data.

• The monitoring program checks every few minutes

whether the parallel processes are progressing cor-

rectly. If an unrecoverable error occurs, the dis-

tributed simulation is stopped, and a new simula-

tion is started from the last state which is saved

automatically every 10 — 20 minutes. If a worksta-

tion becomes too busy, automatic migration of the

affected process takes place, as we explain in sec-

tion 5.

All of the above programs (initialization, decomposition,

submit, and monitoring) are performed by one desig-

nated workstation in the cluster. Although it is possible

to perform the initialization and the decomposition in a

distributed fashion in principle, we have chosen a serial

approach for simplicity.

Regarding the selection of free workstations, our strat-

egy is to separate all the workstations into two groups:

workstations with active users, and workstations with

idle users (meaning more than 20 minutes idle time).

An idle-user does not necessarily imply an idle worksta-

tion because background jobs may be running; however,

an idle-user is preferred to an active user. Thus, we first

examine the idle-user workstations to see if the fifteen-

minute average of the CPU load is below a pre-set value,

in which case the workstation is selected. For example,

the load must be less than 0.6 where 1.0 means that a

full-time process is running on the workstation. After

examining the idle-user workstations, we examine the

active-user workstations, and we continue the search as

long as we need more workstations.

In addition to the above programs (initialization, de-

composition, submit, and monitoring), there is also the

parallel program which is executed by all the worksta-

tions. The parallel program consists of two steps: "com-

pute locally", and "communicate with neighbors". Be-

low we discuss issues relating to communication.

4.2 Communication

The communication between parallel processes synchro-
nizes the processes in an indirect fashion because it en-

courages the processes to begin each computational cy-

cle together with their neighbors as soon as they re-

ceive data from their neighbors. Thus, there is a lo-

cal near-synchronization which also encourages a global
near-synchronization. However, neither local nor global

synchronization is guaranteed, and in special circum-

stances the parallel processes can be several integration

time steps apart. This is important when a process mi-

grates from a busy host to a free host, as we explain in

section 5 (also see the appendix).

We organize the communication of data between pro-

cesses by using a well-known programming technique

which is called "padding" or "ghost cells" (Fox [3],

Camp [14]). Specifically, we pad each subregion with

one or more layers of extra nodes on the outside. We

use one layer of nodes if the local interaction extends to

a distance of one neighbor, and we use more layers if the

local interaction extends further. Once we copy the data

from one subregion onto the padded area of a neighbor-

ing subregion, the boundary values are available locally

during the current cycle of the computation. This is a

good way to organize the communication of boundary

values between neighboring subregions.

In addition, padding leads to programming modular-

ity in the sense that the computation does not need to

know anything about the communication of the bound-

ary. As long as we compute within the interior of each

subregion, the computation can proceed as if there was

no communication at all. Because of this separation be-

tween computation and communication, we can develop

a parallel program as a straightforward extension of a

serial program. In our case, we have developed a fluid

dynamics code which can produce either a parallel pro-

gram or a serial program depending on the settings of a

few C-compiler directives. The main differences between

the parallel and the serial programs are the padded areas,

and a subroutine that communicates the padded areas

between processes.

We have implemented a subroutine that communicates

the padded areas between processes using "sockets" and

the TCP/IP protocol. A socket is an abstraction in the

UNIX operating system that provides system calls to

send and receive data between UNIX processes on differ-

ent workstations. A number of different protocols (types

of behavior) are available with sockets, and TCP/IP is

the simplest one. This is because the TCP/IP protocol
guarantees delivery of any messages sent between two

processes. Accordingly, the TCP/IP protocol behaves

as if there are two first-in-first-out channels for writ-

ing data in each direction between two processes. Also,

once a TCP/IP channel is opened at startup, it remains
open throughout the computation except during migra-

tion when it must be re-opened, as we shall see later.

Opening the TCP/IP channel involves a simple hand-

shaking, ''I am listening at this port number. I want to

talk to you at this port number? Okay, the channel is

open." The port numbers are needed to identify uniquely

the sender and the recipient of a message so that mes-

sages do not get mixed up between different UNIX pro-

cesses. Further, the port numbers must be known in

advance before the TCP/IP channel is opened. Thus,

each process must first allocate its port numbers for lis-

tening to its neighbors, and then write the port numbers

into a shared file. The neighbors must read the shared

file before they can connect using TCP/IP.

5 Transparency to other users

Having described the basic operation of our distributed

system, we now discuss the issues that arise when sharing

the workstations with other users. Specifically, there are

two issues to consider: sharing the CPU cycles of each

workstation, and sharing the local area network and the

file server. First, we describe the sharing of CPU cy-

cles and the automatic migration of processes from busy

hosts to free hosts.

5.1 Automatic migration of processes

We distinguish the utilization of a workstation into three

basic categories:

• (i) The workstation is idle.

• (ii) The workstation is running an interactive pro-

gram that requires fast CPU response and few CPU

cycles.

• (iii) The workstation is running another full-time

process in addition to a parallel subprocess.

In the first two cases, it is appropriate to time-share the

workstation with another user. Furthermore, it is pos-

sible to make the distributed computation transparent

to the regular user of the workstation by assigning a

low runtime priority to the parallel subprocesses (UNIX

command "nice"). Because the regular user's tasks run

at normal priority, they receive the full attention of the

processor immediately, and there is no loss of interac-

tiveness. After the user's tasks are serviced, there are

enough CPU cycles left for the distributed computation.

In the third case, when a workstation is running an-

other full-time process in addition to a parallel subpro-

cess, the parallel subprocess must migrate to a new host

that is free. This is because the parallel process interferes

with the regular user, and further, the whole distributed

computation slows down because of the busy worksta-

tion. Clearly, such a situation must be avoided.

Our distributed system detects the need for migration

using the monitoring program that we mentioned in the

previous section. The monitoring program checks the

CPU load of every workstation via the UNIX command

"uptime", and signals a request for migration if the five-

minute-average load exceeds a pre-set value, typically

1.5. The intent is to migrate only if a second full-time

process is running on the same host, and to avoid mi-

grating too often. In our system there is typically one

migration every 45 minutes for a distributed computa-

tion that uses 20 workstations from a pool of 25 work-

stations. Also, each migration lasts about 30 seconds.

Thus, the cost of migration is insignificant because the

migrations do not happen too often.

During a migration, a precise sequence of events takes

place in order for the migration to complete successfully,

• The affected process A receives a signal to migrate.

• All the processes get synchronized.

• Process A saves its state into a dump file, and stops

running.

• Process A is restarted on a free host, and the dis-

tributed computation continues.

Signals for migration are sent through an interrupt mech-

anism, "kill -USR2" (see UNIX manual). In this way,

both the regular user of a workstation and our monitor-

ing program can request a parallel subprocess to migrate

at any time.

The reason for synchronizing all the processes prior to

migration, is to simplify the restarting of the processes

after the migration has completed. In addition, the syn-

chronization allows more than one process to migrate at

the same time if it is desired. In our system, we use a

synchronization scheme which instructs all the processes

to continue running until a chosen synchronization time

step, and then to pause for the migration to take place.

The details of the synchronization scheme are described

in the appendix.

When all the processes reach the synchronization time

step, the processes that need to migrate save their state

and exit, while they notify the monitoring program to

select free workstations for them. The other parallel pro-

cesses suspend execution and close their TCP/IP com-

munication channels. When the monitoring program

finds free hosts for all the migrating processes, it sends

a CONT signal to the waiting processes. In response,

all the processes re-open their communication channels,

and the distributed computation continues normally.

Overall, the migration mechanism is designed to be as

simple as possible. In fact, it is equivalent to stopping

the computation, saving the entire state on disk, and

then restarting; except, we only save the state of the

migrating process on disk. In contrast to this simple

migration mechanism, we note that process migration in

a general computing environment such as a distributed

operating system [15] can be a challenging task. In our

case the task has been simplified because we can design

our processes appropriately to accommodate migration

easily.

5.2 Sharing the network and file server

A related issue to sharing the workstations with other

users, is the sharing of the network and the file server.

A distributed program must be carefully designed to

make sure that the system does not monopolize the net-

work and the file server. Abuse of shared resources is

very common in today's UNIX operating system because

there are no direct mechanisms for controlling or limit-

ing the use of shared resources. Thus, a program such

as FTP (file transfer) is free to send many megabytes

of data through the network, and to monopolize the

network, so that the network appears "frozen" to other

users. A distributed program can monopolize the net-

work in a similar way, if it is not designed carefully.

Our distributed system does not monopolize the net-

work because it includes a time delay between successive

send-operations, during which the parallel processes are

calculating locally. Moreover, the time delay increases

with the network traffic because the parallel processes

must wait to receive data before they can start the next

integration step. Thus, there is an automatic feedback

mechanism that slows down the distributed computa-

tion, and allows other users to access the network at the

same time.

Another situation to consider is when the parallel

processes are writing data to the common file system.

Specifically, when all the parallel processes save their

state on disk at approximately the same time (a couple

of megabytes per process), it is very easy to saturate

both the network and the file server. In order to avoid

this situation, we impose the constraint that the parallel

processes must save their state one after the other in an

orderly fashion, allowing sufficient time gaps between,

so that other programs can use the network and the file

system. Thus, a saving operation that would take 30

seconds and monopolize the shared resources, now takes

60 — 90 seconds but leaves free time slots for other pro-

grams to access the shared resources at the same time.

Overall, a careful design has made our distributed sys-

tem mostly transparent to the regular users of the work-

stations.

6 Fluid dynamics

Having described the overall design of our distributed

system, we now turn our attention to the specifics of fluid

dynamics. First, we review the equations of fluid dynam-

ics, and then we explain why local interaction methods

are appropriate for simulating subsonic flow. Finally, we

outline the numerical methods that we use in our system.

The evolution of a flow is described using a set of par-

tial differential equations, known as the Navier Stokes

equations (Tritton [16], Batchelor [17], Lamb [18]).

These equations can take different forms depending on

the specific problem at hand. In our case, the Navier

Stokes equations involve three fluid variables p,VXtVy:

the fluid density, and the components of the fluid ve-

locity in the x,y directions respectively. The variables

P, Vx, Vy are functions of space and time, and the Navier
Stokes equations express the rates of change of these

variables, as follows,

dP | d{Pvx) | d(pvyj _
dt dx dy

= 0

dVx dvT

~df + Vx~dx~ + K
dVx c2*dP , „Y72T

8Vy_
dt

dVv

y dy
dVv

pdx
r.2

+ 1/VKr

+ Vx Ox + Vy dy - pdy + UV Vy

(1)

(2)

(3)

In the above equations, the symbol V2 is the Laplacian

operator d2/dx2 + d2/dy2, and the coefficients v and c,

are constants, v is the kinematic viscosity of the fluid

(a kind of friction), and c, is the speed of sound. In the

case of three-dimensional flow problems, there is another

equation for the Vz the component of fluid velocity in the

z-direction. Details can be found in any textbook of fluid

mechanics.

A flow is simulated by solving the Navier Stokes equa-

tions numerically. In particular, a grid of fluid nodes is

introduced, which looks very much like the grid of nodes

in figure 3. The fluid nodes are discrete locations where

the fluid variables density and velocity are calculated

at discrete times. A numerical method is used to cal-

culate the future values of density and velocity at each

fluid node using the present and the past values of den-

sity and velocity at this node, at neighboring nodes, and

possibly at distant nodes as well.

A numerical method that employs only neighboring

nodes to calculate the future solution, is called an ex-

plicit method lor local interaction method), and is ideal

for parallel computing. Such a method is also referred to

as a "time-marching" method because the present values

of each fluid node and its neighbors produce the future

value of this fluid node at time t + At, and so on repeat-

edly, where At is the integration time step. By contrast,

a numerical method that employs distant nodes to cal-

culate the future solution, is called an implicit method,

and is difficult to parallelize. This is because an implicit

method computes the solution using a large matrix equa-

tion that couples together distant fluid nodes, and leads

to complex communication between distant nodes.

There are advantages to both explicit and implicit

methods. The obvious advantage of explicit methods is

the ease of parallelization. Another issue to consider is

that an explicit integration step is much less costly than

an implicit integration step. A disadvantage of explicit

methods is that they become numerically unstable at

large time steps At. By contrast, implicit methods can

often use much larger integration time steps At than

explicit methods (Peyret&Taylor [19]). Thus, implicit

methods can often compute a solution using fewer time

steps than explicit methods. In a practical situation, one

has to consider all of the above issues to decide whether

implicit or explicit methods are more suitable. Namely,

one has to consider the relative cost of an implicit step

versus an explicit step, the availability of parallel com-

puting, and the nature of the problem which affects the

choice of a small or a large integration time step.

In the case of simulating subsonic flow, the nature of

the problem does not allow the use of very large inte-

gration time steps At. This is because subsonic flow

includes two different time-scales - slow-moving hydro-

dynamic flow and fast-moving acoustic waves - and the

latter dominate the choice of integration time step. In

particular, the time step At must be very small to model

accurately the acoustic waves that propagate through

the fluid and reflect off obstacles. If Ax is the spacing

between neighboring fluid nodes, and ca is the speed of

propagation of acoustic waves, then the product c,At

must be comparable to Ax in order to have enough res-

olution to follow the passage and reflection of acoustic

waves. Thus, we require the relation.

Ax ,A((4)

Because of this requirement, the large time steps of im-

plicit methods are not relevant. Instead, explicit meth-

ods are preferable in this case because of their simplicity

and ease of parallelization.

In our system, we employ the following two explicit

methods: explicit finite differences (Peyret&Taylor [19]),

and the recently-developed lattice Boltzmann method

(Skordos [20]). The finite difference method is a straight-

forward discretization of the Navier Stokes equations 1-

3. Specifically, the spatial derivatives are discretized us-

ing centered differences on a uniform orthogonal grid,

and the time derivatives are discretized using forward

Euler differences (Peyret&Taylor [19]). For the purpose

of improving numerical stability, the density equation 1

is updated using the values of velocity at time t + At.

In other words, the velocities values are computed first,

and then the density values are computed as a separate

step. The precise sequence of computational steps for

the finite difference method is as follows,

• Calculate Vx, Vy (inner)

• Communicate: send/recv Vx,Vy (boundary)

• Calculate p (inner)

• Communicate: send/recv p (boundary)

• Filter p, Vx, V'y (inner)

The filter that is included above is crucial for simulat-

ing subsonic flow at high Reynolds number (fast moving

flow). The fast flow and the interaction between acoustic

waves and hydrodynamic flow can lead to slow-growing

numerical instabilities. The filter prevents the instabili-

ties by dissipating high spatial frequencies whose wave-

length is comparable to the grid mesh size (the distance

between neighboring fluid nodes). Our filter is based on

a fourth order numerical viscosity (Peyret&Taylor [19]).

We use the same filter both for the finite difference

method and for the lattice Boltzmann method.

The lattice Boltzmann method is a recently-developed

method for simulating subsonic flow, which is compet-

itive with finite differences in terms of numerical accu-

racy. Because the lattice Boltzmann method is a relax-

ation type of algorithm, it is somewhat more stable than

explicit finite differences. The lattice Boltzmann method

uses two kinds of variables to represent the fluid, the

traditional fluid variables p, Vx,Vy, and another set of

variables called populations F,-. During each cycle of the

computation, the fluid variables p, Vx, Vy are computed

from the F:-, and then the p, Vx, Vy are used to relax the

Fi. Subsequently, the relaxed populations are shifted to

the nearest neighbors of each fluid node, and the cycle

repeats. The precise sequence of computational steps for

the lattice Boltzmann method is as follows,

• Relax Fi (inner)

• Shift Fi (inner)

• Communicate: send/recv F,- (boundary)

• Calculate p, Vx, Vy from F,- (inner)

• Filter p, Vx, Vy (inner)

More details on the lattice Boltzmann method can be

found in Skordos [20].

Regarding the communication of boundary values by

the finite difference method (FD) and the lattice Boltz-

mann method (LB), there are some differences that will

become important in the next two sections, when we dis-

cuss the performance of our parallel simulation system.

The first difference is that FD sends two messages per

computational cycle as opposed to LB which sends all

the boundary data in one message. This results in slower

communication for FD when the messages are small be-

cause each message has a significant overhead in a local

area network. The second difference is that LB commu-

nicates 5 variables (double precision floating-point num-

bers) per fluid node in three dimensional problems, while

FD communicates only 4 variables per fluid node. In

two dimensional problems, both methods communicate

3 variables per fluid node.

7 Experimental measurements of

performance

The performance of the parallel simulation system

is measured when using the finite difference method

and the lattice Boltzmann method to simulate a well-

known problem in fluid mechanics, Hagen-Poiseuille flow

through a rectangular channel (Skordos [20] and Lan-

dau&Lifshitz [21, p.51]). The goal of testing two differ-

ent numerical methods is to examine the performance

of the parallel system on two similar, but slightly differ-

ent parallel algorithms. The question of which numerical

method is better for a particular problem is not our main

1-

0.8

0.6

0.4 -

0.2

-i 1 1 r- -1 1 r-

100 200 300
parallel grain size1/*

Figure 5: Parallel efficiency in 2D simulations using lat-

tice Boltzmann.

concern here. However, we can say that the two meth-

ods produce comparable results for the same resolution

in space and time. Moreover, both methods converge

quadratically with increased resolution in space to the

exact solution of the Hagen-Poiseuille flow problem.

Below we present measurements of the parallel effi-

ciency /, and the speedup S defined as follows,

5 7\
/ = PTV

(5)

where Tp is the elapsed time for integrating a problem,

using P processors, and T\ is the elapsed time for inte-

grating the same problem using a single processor. We

measure the times Tp and T\ for integrating a problem

by averaging over 20 consecutive integration steps, and

also by averaging over each processor that participates in

the parallel computation. The resulting average is the

time interval it takes to perform one integration step.
We use the UNIX system call "gettimeofday" to obtain

accurate timings. To avoid situations where the Ether-

net network is overloaded by a large FTP or something

else, we repeat each measurement twice, and select the

best performance.

We use twenty-five HP9000/700 workstations that are

connected together by a shared-bus Ethernet network.

Sixteen of the workstations are 715/50 models, six are

720 models, and three are 710 models. The 715/50 work-

stations are based on a Risk processor running at 50

MHz, and have an estimated performance of 62 MIPS

20

§■ •o a
t>
a

15 -

10 -

5 -

1

 1

1

 1

1

 1

1

jH * (2x2)
// » (3x3)
/L^*** •*•*/***«*** 0 (4x4)

' J" o (5x4) |

i i i i 1 i . i i 1 i i i

500 1000
problem sizel/*

Figure 6: Parallel speedup in 2D simulations using lat-

tice Boltzmann.

100 200 300
parallel grain size1/a

Figure 7: Parallel efficiency in 2D simulations using finite

differences.

and 13 MFLOPS, while the 720 and 710 workstations

have a slightly lower performance.

For analysis purposes, we define the speed of a work-

station as the number of fluid nodes integrated per sec-

ond, where the number of fluid nodes does not include

the padded areas discussed in section 4.2. The table

below presents the speed of the workstations for 2D and

3D simulations using the lattice Boltzmann method (LB)

and the finite difference method (FD). We have calcu-

lated these numbers by averaging over simulations of dif-

ferent size grids that range from 1002 to 3002 fluid nodes

in 2D, and from 103 to 443 in 3D. Also, we have nor-

malized the speeds relative to the speed of the 715/50

workstation,

LB 2D

LB 3D

FD2D

FD3D

715/50

1.0 ±.04

.51 ±.01

1.24 ±.1

1.0±.l

710

.84 ±.02

.40 ±.01

1.08±.l

.85 ±.1

720
.86 ±.08

.42 ± .02

1.17±.l

.94 ±.1

The relative speed of 1.0 corresponds to 39132 fluid

nodes integrated per second.

In our graphs of parallel speedup and efficiency, we use

the the 715/50 workstation to represent the single pro-

cessor performance. We do not use the performance of

the slowest workstation (the 710 model) for normaliza-

tion purposes because it would over-estimate the perfor-

mance of our system. In particular, most of the worksta-

tions are 715 models, and our strategy is to choose 715

models first before choosing the slightly slower 710 and

720 models. We have tested that the speedup achieved

by sixteen workstations, which are all 715 models, does

not change if one or two workstations are replaced with

710 models. Thus, it makes sense to normalize our re-

sults using the performance of the 715 model.

Figure 5 shows the efficiency as a function of grain size

for (2x2), (3x3), (4x4), and (5x4) decompositions (tri-

angles, crosses, squares, circles). On the horizontal axis,

we plot the square root of number of nodes N of each

subregion. We see that good performance is achieved

in two-dimensional simulations when the subregion per

processor is larger than 1002 fluid nodes. In the next

section, we present a theoretical model of parallel ef-

ficiency that predicts very accurately our experimental

results shown in figure 5 and in the other figures also.

Figure 6 shows the speedup for the lattice Boltzmann

method (LB), and figures 7 and 8 show the efficiency

and speedup for the finite difference method (FD).

We notice one difference between the FD and LB ef-

ficiency curves: the efficiency decreases more rapidly for

FD than LB as the subregion per processor decreases.

To understand this difference, we quote a general for-

mula for the parallel efficiency, which is derived in the

next section (see equation 12),

-l

/ 1 +
1 calc

(6)

10
where Tcom and Tca\c are the communication and the

500 1000
problem size1/s

Figure 8: Parallel speedup in 2D simulations using finite

differences.

computation time it takes to perform one integration

step. We observe that Tca\c is smaller for FD than LB

(see the table of speeds earlier), and moreover that Tcom

becomes larger for FD than LB as the subregion per pro-

cessor decreases. The latter is true because each message

in a local area network incurs an overhead, and FD com-

municates two messages per integration step as opposed

to LB which communicates only one message per inte-

gration step (see end of section 6). Because of these

differences between FD and LB, the efficiency decreases

more rapidly for FD than LB as the subregion per pro-

cessor decreases.

Next, we compare the efficiency of three-dimensional

simulations versus two-dimensional ones, using the lat-

tice Boltzmanii method. Figure 9 plots the efficiency of

2D and 3D simulations as a function of the number of

processors P. Here, we simulate a problem which grows

linearly with the number of processors P, and is decom-

posed as (P x 1) in 2D, and as (P x 1 x 1) in 3D. The

subregion per processor is held fixed at 1202 nodes in

2D, and 253 nodes in 3D, which are comparable sizes,

equal to about 14,500 fluid nodes per processor. We

see that the efficiency remains high in 2D (triangles),

and decreases quickly in 3D (crosses) as the number of

processors increases. This is because the total traffic

through the shared-bus network increases in proportion

to the number of processors, and this affects Tcom in

equation 6 as we shall see in more detail in the next sec-

0 5 10 15 20
number of processors P

Figure 9: The Ethernet network performs well for 2D

simulations (triangles), but poorly for 3D simulations

(crosses).

tion. Also, we note that 3D requires much more data

to be communicated per step than 2D. Thus, Tcom in-

creases faster for 3D than 2D, and the efficiency drops

faster in the case of 3D simulations.

Another way of examining the efficiency of 3D simula-

tions is shown in figures 10 and 11. Figure 10 plots the

efficiency against the size of the subregion for different

decompositions (2x2x2), (3x2x2), etc. We can

see that the efficiency is rather poor. Figure 11 plots

the speedup against the total size of the problem. We

can see that the speedup does not improve when finer

decompositions are employed because the network is the

bottleneck of the computation.

The results shown in figures 10 and 11 have been ob-

tained using the lattice Boltzmann method. The par-

allel efficiency of the finite difference method (FD) in

3D simulations is even worse than the lattice Boltzmann

method (LB), and is not shown here. The FD efficiency

is worse than LB because the FD computes twice as fast

as LB per integration step (see earlier table of speeds),

which makes the ratio Tcom/Tcaic larger for FD than LB,

and leads to lower efficiency according to equation 6.

We note that in our system the low efficiency of 3D

simulations is accompanied by frequent network errors

because of excessive network traffic. In particular, the

TCP/IP protocol fails to deliver messages after excessive

retransmissions. Both the low efficiency, and the network

0.8

» (2x2x2)
* (3x2x2)
- (4x2x2)
o (4x3x2)

0.6 -

0.4 -

0.2

20 30
parallel grain size1/3

Figure 10: Parallel efficiency in 3D simulations using the

lattice Boltzmann method.

•o

8-

4 -

» (2x2x2)
« (3x2x2)
n (4x2x2)
o (4x3x2)

_L
20

X _L
100 40 60 B0

problem size1/S

Figure 11: Parallel speedup in 3D simulations using the

lattice Boltzmann method.

errors indicate the need for a faster network, or dedicated

connections between neighboring processors in order to

perform 3D simulations efficiently.

8 Theoretical analysis of parallel

efficiency

In order to understand better the experimental results

of the previous section, we develop a theoretical model

of the parallel efficiency of local interaction problems.

In particular, we derive a formula for the parallel effi-

ciency in terms of the parallel grain size (the size of the

subregion that is assigned to each processor), the speed

of the processors, and the speed of the communication

network. Our analysis is based on two assumptions: (i)

the computation is completely parallelizable, and (ii) the

communication does not overlap in time with the com-

putation. The first assumption is valid for local inter-

action problems, and the second assumption is valid for

the distributed system that we have implemented. The

extension of our analysis to situations where communica-

tion and computation overlap in time is straightforward

as we shall see afterwards.

We first examine the relationship between the effi-

ciency and the processor utilization. We define the ef-

ficiency / as the speedup S divided by the number of

processors P. Further, we define the speedup S as the

ratio T\ /Tp of the total time it takes to solve a problem

using one processor, denoted T\, divided by the total

time it takes to solve the same problem using P proces-

sors, denoted Tp. In other words, we have the following

expression,

(7) ' = f 7i

PTD

We define the processor utilization g as the fraction of

time spent for computing, denoted Tca;c, divided by the

total time spent for solving a problem which includes

both computing and waiting for communication to com-

plete. Also, we use the simplifying assumption that the

communication and the computation do not overlap in

time, so that we define Tcom as the time spent for com-

munication without any computation occurring during

this time. Thus, we have the following expression,

T / m \ -i
1 calc

(9)

g = —-— = I 1 + =— (8)
■1 calc i -I com \ -* calc /

To compare / and g, we note that the values of both /

and g range between the following limits,

0<g <1

0</<l

for the worst case and the best case respectively. We ex-

pect that high utilization g corresponds to high parallel

efficiency /; however, this depends on the problem that

we are trying to compute in parallel.

In the special case of a problem that is completely

parallelizable, the processor utilization g is exactly equal

to the parallel efficiency /. To show this, we use the

following relation as the definition of a problem being

completely parallelizable,

-* calc —
7i

(10)

Then, we also use the assumption that communication

and computation do not overlap in time, so that we can

obtain a second relation,

(Tcalc + Tc com I — *■ p 111)

By substituting equations 10 and 11 into equation 7,

and comparing with equation 8, we arrive at the desired

result that the parallel efficiency is exactly equal to the

processor utilization,

/ = 9 = 1 +
Tfl

Teal,
(12)

We have derived the above equation under the assump-

tion that communication and computation do not over-

lap in time. If this assumption is violated in a practical

situation, then the communication time Tcom should be

replaced with a smaller time interval, the effective com-

munication time. This modification does not change the

conclusion / = g, it simply gives higher values of effi-

ciency and utilization.

To proceed further, we need to find how the ratio

Tcom/Tcaic depends on the size of the subregion. First,

we observe that Tca\c is proportional to the size of the

subregion. If N is the size of the subregion (the num-

ber of parallel nodes that constitute one subregion), we

write,

•* calc —
N

U calc
(13)

where Ucau is a constant, the computational speed of the

processors for the specific problem at hand. In a similar

way, we seek to find a formula for the communication

time Tcom in terms of the size of the subregion that is

assigned to each processor. As a first model, we write

the following simple expression,

Nc
Tet

Uc,
(14)

where Nc is the number of communicating nodes in each

subregion, namely the outer surface of each subregion.

The factor Ucom represents the speed of the communica-

tion network.

For analysis purposes, we want to know exactly how

Nc varies with the size of the subregion N. We consider

the geometry of a subregion in two dimensions. We can

see that the boundary of a subregion is one power smaller

than the volume expressed in terms of the number of

nodes. For example, if we consider square subregions

of size l? nodes, the enclosing boundary contains 4L

nodes, and the ratio of communicating nodes to the total

number of nodes per subregion can be as large as 4/L.

In general, we have the following relations,

Nc = mN1/2 (15)

Nc = mN2'3 (16)

in two and three dimensions respectively, where the con-

stant m depends on the geometry of the decomposition.

For example, if the decomposition of a problem is (Px 1),

then m = 2 because each subregion communicates with

its left and right neighbors only. The following table

gives m for a few decompositions which we use in our

performance measurements in section 7,

P x 1 2x2 3x3 4x4 5x4

m 2 2 3 4 4

If we introduce the above formulas for Nc and m into

equation 12, we obtain the following expressions for the

parallel efficiency of a local interaction problem in two

and three dimensions respectively,

/ = fi + AT-^^iy1 (17)

/ 1 + JV
_1/3

Uc

mUc,

Uc

(18)

13

The above equations show that if N is sufficiently large

compared to the term mUCom/Ucaic, then we can achieve

high parallel efficiency.

A few comments are in order. First, we must remem-

ber that in practice we can not increase arbitrarily the

size of the subregion per processor in order to achieve

high efficiency. This is because the computation may

take too long to complete, and because the memory of

each workstation is limited. In our present system, each

workstation has maximum memory 32 megabytes, and

a large part of this memory is taken by other programs,

and other users. A practical upper limit of how much

memory we can use per workstation is 15 megabytes,

which corresponds to 3002 fluid nodes in 2D simulations

and 403 fluid nodes in 3D simulations.

In 2D simulations the upper limit of 3002 fluid nodes

per subregion is large enough to achieve high efficiency.

As we saw in figure 5, high efficiency is achieved when the

subregion per processor is larger than 1002 fluid nodes.

By contrast, in 3D simulations the upper limit of 403

fluid nodes per subregion is too small to achieve high

100 200 300
parallel grain size Nl/*

Figure 12: Theoretical model of parallel efficiency for

two-dimensional subregions of size N.

efficiency. Further, the efficiency depends on the size of

the subregion as iV-1/3 in 3D versus N~ll2 in 2D. as we

can see from equations 17 and 18. This means that the

size of the subregion N must increase much faster in 3D

than in 2D to achieve similar improvements in efficiency.

Because of this fact, achieving high efficiency in 3D sim-

ulations is much more difficult than in 2D simulations.

Having described the basic idea behind our model of

parallel efficiency, we now discuss a small improvement

of our model. We observe that in the case of a shared-

bus network the communication time Tcom must depend

on the number of processors that are using the network.

In particular, if we assume that all the processors ac-

cess the shared-bus network at the same time, then the

communication time Tcom must increase linearly with

the number of processors. Based on this assumption, we

rewrite equation 14 for Tcom as follows,

mNll2{P-\)
T — -* com —

Vc,
(19)

for the case of two dimensional problems. The constant

Veom is the speed of communication when there are only

two processors sharing the network. Using the new ex-

pression for Tcom, the equation of parallel efficiency in

two dimensions becomes as follows,

m Ucalc
/ = (l + N~1/2(P-1)-

Vcl

(20)

To verify our model, below we compare the efficiency

that is predicted by our model against the experimen-

tally measured efficiency of section 7.

i i i i | i i i < | i i i > | i i i i | i i i i | i

*. 1 _^^ _
Ü \^"*~-*^
q X ^**-*A
u
Ü \ ^^-4^.

p ^ ^~^*~*-^ «i \ ^~-*^.
\ ^*'-*-^

O.B \ *
V

X.K

X
X

OR -
* 2D
"3D ■""*•,,

0.4 -

1 1

14

0 5 10 15 20 25
number ot processors P

Figure 13: Theoretical model of parallel efficiency which

assumes that the communication time increases linearly

with the number of processors.

Figure 12 plots the efficiency / versus JV1/2 accord-

ing to formula 20, using Ucaic/Vcom — 2/3. The four

curves marked with triangle, cross, square, circle corre-

spond to different numbers of processors P = 4, 9,16, 20

and also different values of m = 2,3,4,4 which depends

on the geometry of the decomposition as we explained

earlier. A comparison between the predicted efficiency

shown in figure 12 and the experimentally measured ef-

ficiency shown in figure 5 reveals good agreement when

the subregion per processor is larger than N > 1002.

However, for small subregions, N < 1002, the predicted

efficiency is too high compared to the experimental ef-

ficiency. The reason for this is that messages in a lo-

cal area network have a large overhead which becomes

important when the messages are small, namely, when

the subregion per processor is smaller than N < 1002

fluid nodes. The overhead of small messages leads to a

smaller communication speed VCOm, an<i a correspond-

ing decrease of efficiency /. We have not attempted to

model the overhead of small messages here.

Another way of examining the validity of equation

equation 20 is to plot the efficiency / versus the num-

ber of processors P while keeping all other parameters

constant. In figure 13, we plot the efficiency of 2D sim-

ulations according to equation 20 using JV = 1252. We

set Ucaic/VCom = 2/3 as we did in figure 12, and we set

m = 2 because each subregion communicates with its left

and right neighbors only. For comparison purposes, we

also plot the efficiency of 3D simulations, using N = 253

and m = 2. The computational speed is half as large

in 3D than in 2D, and the communication of each fluid

node in 3D requires 5/3 as much data as in 2D. Taking

these numbers into account, we can write the following

expression for the parallel efficiency of 3D simulations,

r _1
mLcaU\ ^

\ 0 V -on

where the factor 5/6 arises because we use the 2D values

of Ucaic and Vcom which give Ucaic/Vcom = 2/3.
We now compare the predicted efficiency shown in fig-

ure 13 against the experimentally measured efficiency

shown in figure 9. We can see that there is good agree-

ment. Also, the overhead of small messages, which we

mentioned earlier, does not affect the predicted efficiency

in this case because the subregion per processor is large,

N - 1252 in 2D, and 253 in 3D. Overall, we find reason-

able agreement between the theoretical model and the

experimental measurements of parallel efficiency. The

model can be improved further, if desired, by employing

more sophisticated expressions for the communication

time Tcom in equation 19 which describes the behavior

of the shared-bus Ethernet network.

9 Conclusion

A promising approach of simulating fluid dynamics on

a cluster of non-dedicated workstations has been pre-

sented. The approach is particularly good for simulating

subsonic flow which involves both hydrodynamics and

acoustic waves. A parallel simulation system has been

developed and applied to solve a real problem, the sim-

ulation of air flow inside wind musical instruments.

The system achieves concurrency by decomposing the

flow problem into subregions, and by assigning the sub-

regions to parallel subprocesses on different worksta-

tions. The use of explicit numerical methods leads

to minimum communication requirements. The paral-

lel processes automatically migrate from busy hosts to

free hosts in order to exploit the unused cycles of non-

dedicated workstations, and to avoid disturbing the reg-

ular users. Typical simulations achieve 80% parallel ef-

ficiency (speedup/processors) using 20 HP-Apollo work-

stations.
Detailed measurements of the parallel efficiency of 2D

and 3D simulations have been presented, and a the-

oretical model of efficiency has been developed which
15

fits closely the measurements. The measurements show

that a shared-bus Ethernet network with 10Mbps peak

bandwidth (megabits per second) is sufficient for two-

dimensional simulations of subsonic flow, but is limited

for three-dimensional simulations. It is expected that

the use of new technologies in the near future such as

Ethernet switches. FDDI and ATM networks will make

practical three-dimensional simulations of subsonic flow

on a cluster of workstations.

Acknowledgments

The author would like to thank Jacob Katzenelson, and

Hal Abelson for useful criticisms on earlier versions of

this paper. The author would also like to thank all the

members of the project on Mathematics and Compu-

tation at MIT for generously allowing the use of their

workstations.

Appendix

The appendix describes certain aspects of our dis-

tributed system that are not vital for a general reading,

but are useful to someone who is interested in imple-

menting a distributed system similar to ours.

A Un-synchronization of processes

The synchronization between parallel processes that we

discussed in section 4.2 can be violated in situations such

as the following. Let us suppose that process A stops

execution after communicating its data for integration

step N. The nearest neighbor B can integrate up to

step N + 1 and then stop. Process B can not integrate

any further without receiving data for integration step

N + 1 from process A. However, the next to nearest

neighbor can integrate up to step N + 2, and so on. If

we consider a two-dimensional decomposition (J x K)

of a problem, the largest difference in integration step

between two processes is AiV,

AN = max(J, K) - 1 (22)

assuming that neighbors depend on each other along the

diagonal direction (this corresponds to a full stencil of
local interactions as shown in figure 4). If neighbors

depend on each other along the horizontal and verti-

cal directions only (this is the star stencil of figure 4),

then the largest difference in integration step between

two processes becomes,

AiV = (J - 1) + (K - 1) (23)

These worst cases of un-synchronization are important

when we consider the migration of processes because a

precise global synchronization is required then, as is ex-

plained in section 5.

B Synchronization algorithm

The synchronization algorithm that is used during pro-

cess migration (see section 5) is as follows. First, a syn-

chronization request is sent to all the processes by means

of a UNIX interrupt. In response to the request, every

process writes the current integration time step into a

shared file (using file locking semaphores, and append

mode). Then, every process examines the shared file to

find the largest integration time step Tmax among all the

processes. Further, every process chooses (Tmax+ 1) to

be the upcoming synchronization time step, and contin-

ues running until it reaches this time step. It is impor-

tant that all the processes can reach the synchronization

time step, and that no process continues past the syn-

chronization time step.

The above algorithm finds the smallest synchroniza-

tion time step that is possible at any given time, so that

a pending migration can take place as soon as possible.

C Order of communication

A minor efficiency issue with regard to TCP/IP commu-

nication (see section 4.2) is the order in which the neigh-
boring processes communicate with each other. One

way is for each parallel process to communicate with

its neighbors on a first-come-first-served basis. An alter-

native way is to impose a strict ordering on the way the

processes communicate with each other. For example, we

consider a one-dimensional decomposition (J x 1) of a

problem with non-periodic outer-boundaries where each

process receives data from its left neighbor before it can

send data to its right neighbor. Then, the leftmost pro-

cess No. 1 will access the network first, and the nearest-

neighbor process No. 2 will access the network second,

and so on. The intent of such ordering is to pipeline the

messages through the shared-bus network in a strict fash-

ion in an attempt to improve performance. However, it

does not work very well if one process is delayed because

all the other processes are delayed also. Small delays

are inevitable in time-sharing UNIX systems, and strict

ordering amplifies them to global delays. By contrast,

asynchronous first-come-first-served communication al-

lows the computation to proceed in those processes that

are not delayed, and better performance is achieved over-

all. In our system we implement first-come-first-served

communication using the "select" system call of sockets

(see UNIX manual).

D Other communication mechanisms

In section 4.2 we described the communication mecha-

nism of our system which is based on the TCP/IP pro-

tocol and sockets. Apart from the TCP/IP protocol,

another protocol that is popular in distributed systems

is the UDP/IP protocol, also known as datagrams. The

UDP/IP protocol is similar to TCP/IP with one major

difference: There is no guaranteed delivery of messages.

Thus, the distributed program must check that messages

are delivered, and resend messages if necessary, which

is a considerable effort. However, the benefit is that

the distributed program has more control of the com-

munication. For example, a distributed program could

take advantage of knowing the special properties of its

own communication to achieve better results than the

TCP/IP standard. Also, another advantage is robust-

ness in the case of network errors that occur under very

high network traffic. For example, when TCP/IP fails,

it is hard to know which messages need to be resent.

In UDP/IP the distributed program controls precisely
which data is sent and when, so that the failure problem

is handled directly. Despite these advantages of UDP/IP
over TCP/IP, we have chosen to work with TCP/IP be-
cause of its simplicity.

E Performance bugs to avoid

In section 7 we presented measurements of the perfor-

mance of our workstations. Here, we note that the per-

formance of the HP9000/700 Apollo workstations can

degrade dramatically at certain grid sizes by a factor of

two or more, but there is an easy way to fix the problem.

The loss of performance occurs when the length of the

arrays in the program is a near multiple of 4096 bytes

which is also the virtual-memory page size. This suggests

that the loss of performance is related to the prefetching

algorithm of the CPU cache of the HP9000/700 comput-

ers. To avoid the loss of performance, we lengthen our

arrays with 200-300 bytes when their length is a near

multiple of 4096. This modification eliminates the loss

of performance.

16

References

[1] C. H. Cap and V. Strumpen, "Efficient parallel com-

puting in distributed workstation environments."

Parallel Computing, vol. 19, no. 11, pp. 1221-1234,

1993.

[21 J. Chase. F. Amador, E. Lazowska, H. Levy, and

R. Littlefield, "The Amber system: Parallel pro-

gramming on a network of multiprocessors." ACM

SIGOPS Operating Systems Review, vol. 23. no. 5,

pp. 147-158, 1989.

[3] G. Fox, M. Johnson, G. Lyzenga, S. Otto,

J. Salmon, and D. Walker, Solving Problems on

Concurrent Processors, vol. 1. Prentice-Hall Inc.,

1988.

[4] R. Blumofe and D. Park, "Scheduling large-scale

parallel computations on networks of workstations,"

in Proceedings Of High Performance Distributed

Computing 94, San Franscisco, California, pp. 96-

105. 1994.

[5] V. S. Sunderam, "A framework for parallel dis-

tributed computing," Concurrency: Practice and

Experience, vol. 2, no. 4, pp. 315-339, December

1990.

[6] N. Carriero, D. Gelernter, D. Kammsky, and

J. Westbrook, Adaptive Parallelism with Piranha.

Report No. YALEU/DCS/RR-954, Department of

Computer Science, Yale University, February 1993.

[71 S. Kohn and S. Baden, A robust parallel pro-

gramming model for dynamic non-uniform scientific

computations. Report CS94-354, University of Cal-

ifornia, San Diego, 1994.

[8] G. Chesshire and V. Naik, "An environment for par-

allel and distributed computation with application

to overlapping grids," IBM Journal Research and

Development, vol. 38, no. 3, pp. 285-300, May 1994.

[9] H. Bal, F. Kaashoek, and A. Tanenbaum. "Orca:

A languate for parallel programming of distributed

systems," IEEE Transactions on Software Engi-

neering, vol. 18, no. 3, pp. 190-205, March 1992.

[10] C. H. Shadle, The Acoustics of Fricative Conso-

nants. Department of Electrical Engineering and

Computer Science MIT, Ph.D. Dissertation. 1985.

[11] M. Verge, B. Fabre, W. Mahu, A. Hirschberg,

R. van Hassel, and A. Wijnands, "Jet formation

and jet velocity fluctuations in a flue organ pipe,"

Journal of Acoustical Society of America, vol. 95,

no. 2, pp. 1119-1132. February 1994.

[12] M. Verge, R. Causse. B. Fabre, A. Hirschberg, and

A. van Steenbergen, "Jet oscillations and jet drive in

recorder-like instruments," accepted for publication

in Acta Acustica, 1994.

[13] A. Hirschberg, Wind Instruments. Eindhoven Insti-

tute of Technology, Report R-1290-D, 1994.

[14] W. Camp, S. Plimpton, B. Hendrickson, and R. Le-

land, "Massively parallel methods for engineer-

ing and science problems," Communications of the

ACM, vol. 37, no. 4, pp. 31-41, April 1994.

[15] F. Douglis, Transparent Process Migration in the

Sprite Operating System. Report No. UCB/CSD

90/598, Computer Science Division (EECS), Uni-

versity of California Berkeley, September 1990.

[16] D. Tritton, Physical Fluid Dynamics. Oxford Sci-

ence Publications, Second Edition, 1988.

[17] G. Batchelor, An Introduction to Fluid Dynamics.

Cambridge University Press, 1967.

[18] H. Lamb, Hydrodynamics. Sixth Edition, Dover

Publications, N.Y., 1932,1945.

[19] R. Peyret and T. D. Taylor. Computational Methods

For Fluid Flow. Springer-Verlag, New York, N.Y.,

1990.

[20] P. Skordos, "Initial and boundary conditions for

the lattice Boltzmann method." Physical Review E,

vol. 48, no. 6, pp. 4823-4842. December 1993.

[21] L. Landau and E. Lifshitz. Fluid Mechanics, 2nd

Edition. Pergamon Press, New York, NY, 1989.

17

